Multifunctional thermoresponsive peptide hydrogels designed to meet the demands of biomedical applications

Sep 6, 2017 10:00:00 AM

The uncertainties of the long-term stability and effects of artificial materials in the human body have stimulated research into more natural materials for many biomedical applications. This search has lead to the discovery of peptide hydrogels, a highly promising family of constructs that are capable of self-assembly, typically into β-sheets, and can emulate the properties of natural materials such as collagen. Fine-tuning the mechanical properties of hydrogels to solve biomedical problems is, however, a real challenge. A team headed by researchers at the University of Auckland in New Zealand has come one step further with peptide hydrogels that are reversibly thermoresponsive. Their innovative hydrogels are based on multifunctional peptides that combine a hydrogel-forming β-sheet peptide segment, an enzyme substrate that enables biodegradation, and a RGD sequence to promote cell adhesion.


Read the Review Article

 

 

Topics: Peptide synthesis, PS3 peptide synthesizer, Peptide synthesizer, β-sheet-forming peptides, Multifunctional peptides, Hydrogel